题目内容

11.已知矩阵A=$[\begin{array}{l}{a}&{1}\\{1}&{a}\end{array}]$,直线l:x-y+4=0在矩阵A对应的变换作用下变为直线l′:x-y+2a=0.
(1)求实数a的值;
(2)求A2

分析 (1)设直线l上一点M(x0,y0)在矩阵A对应的变换作用下变为l′上点M(x,y),通过$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{a}&{1}\\{1}&{a}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,用x0、y0表示x、y并代入直线l′方程,利用点M在直线l上可得a的值;
(2)由a=2直接计算即可.

解答 解:(1)设直线l上一点M(x0,y0)在矩阵A对应的变换作用下变为l′上点M(x,y),
则$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{a}&{1}\\{1}&{a}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{a{x}_{0}+{y}_{0}}\\{{x}_{0}+a{y}_{0}}\end{array}]$,
所以$\left\{\begin{array}{l}{x=a{x}_{0}+{y}_{0}}\\{y={x}_{0}+a{y}_{0}}\end{array}\right.$,
代入l′方程得(ax0+y0)-(x0+ay0)+2a=0,
即(a-1)x0-(a-1)y0+2a=0.
∵(x0,y0)满足x0-y0+4=0,
∴$\frac{2a}{a-1}$=4,解得a=2;
(2)由A=$[\begin{array}{l}{a}&{1}\\{1}&{a}\end{array}]$=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,
得A2=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$=$[\begin{array}{l}{5}&{4}\\{4}&{5}\end{array}]$.

点评 本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网