题目内容

(2012•日照一模)已知各项均不相等的等差数列{an}的前四项和S4=14,a3是a1,a7的等比中项.
(I)求数列{an}的通项公式;
(II)设Tn为数列{
1
anan+1
}
的前n项和,若Tn
1
λ
an+1
对一切n∈N*恒成立,求实数λ的最大值.
分析:(I)设出此等差数列的公差为d,根据等差数列的前n项和公式及等比数列的性质,列出方程组,可求出首项和公差,根据首项和公差写出等差数列{an}的通项公式即可;
(II)写出数列的通项,利用裂项法求数列的和,再分离参数,利用基本不等式求出最消值,即可得到实数λ的最大值.
解答:解:(I)设公差为d,∵S4=14,a3是a1,a7的等比中项
4a1+6d=14 
(a1+2d)2=a1(a1+6d)

解得:
d=1
a1=2
d=0
a1=
7
2
(舍去),
∴an=2+(n-1)=n+1;
(II)∵
1
anan+1
=
1
(n+1)(n+2) 
=
1
n+1
-
1
n+2 

∴Tn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2 
=
1
2
-
1
n+2
=
n
2(n+2)

Tn
1
λ
an+1
对一切n∈N*恒成立,
n
2(n+2)
n+2
λ

λ≤
2(n+2)2
n
?n∈N*恒成立,
2(n+2)2
n
=2(n+
4
n
+4)
≥16,
∴λ≤16
∴λ的最大值为16.
点评:本题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查等比数列的性质,考查不等式恒成立问题,考查利用基本不等式求函数的最值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网