题目内容

(2012•日照一模)已知定义在R上奇函数f(x)满足①对任意x,都有f(x+3)=f(x)成立;②当x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,则f(x)=
1
|x|
在[-4,4]上根的个数是(  )
分析:由题意可得奇函数f(x)是周期等于3的周期函数,则f(x)=
1
|x|
在[-4,4]上根的个数,就是函数f(x) 与函数 y=
1
|x|
的交点的个数,结合图象得出结论.
解答:解:∵f(x+3)=f(x)成立,∴奇函数f(x)是周期等于3的周期函数.
当 0≤x≤
3
2
时,f(x)=
2x ,  0 ≤x<
3
4
3-2x  ,  
3
4
<x≤3

f(x)=
1
|x|
在[-4,4]上根的个数就是函数f(x) 与函数 y=
1
|x|
的交点的个数,如图所示:
故选B.
点评:本题主要考查方程的根的存在性及个数判断,函数的奇偶性与周期性的应用,抽象函数的应用,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网