题目内容
【题目】某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为 和 ,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(1)求恰好有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.
【答案】
(1)解:设恰好有一种新产品研发成功为事件A,则
P(A)=(1﹣ )× + ×(1﹣ )=
(2)解:由题可得设企业可获得利润为ξ,则X的取值有﹣90,50,80,220.
由独立试验的概率计算公式可得,P(X=0)=(1﹣ )(1﹣ )= ,
P(X=50)= × = ,
P(X=80)= = ,
P(X=220)= = .
∴ξ的分布列如下:
X | ﹣90 | 50 | 80 | 220 |
P |
则数学期望E(X)= +50× + +220× =121.5万元
【解析】(1)设恰好有一种新产品研发成功为事件A,利用相互独立与互斥事件的概率计算公式可得P(A)=(1﹣ )× + ×(1﹣ ).(2)由题可得设企业可获得利润为ξ,则X的取值有﹣90,50,80,220.由独立试验的概率计算公式可得,P(X=0)=(1﹣ )(1﹣ ),P(X=50)= × ,P(X=80)= , P(X=220)= .
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).
【题目】一次考试中,五名学生的数学、物理成绩如下表
学生 | |||||
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)求出这些数据的线性回归直线方程.
参考公式回归直线的方程是: ,
其中对应的回归估计值. , .