题目内容

【题目】某商场在近30天内每件的销售价格P(元)与时间t(天)的函数关系是P= ,该商场的日销售量Q=﹣t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天.

【答案】解:当0<t<15,t∈N+时,y=(t+30)(﹣t+40)=﹣t2+10t+1200=﹣(t﹣5)2+1225.∴t=5时,ymax=1225;
当15≤t≤30,t∈N+时,y=(﹣t+60)(﹣t+40)=t2﹣100t+2400=(t﹣50)2﹣100,
而y=(t﹣50)2﹣100,在t∈[15,30]时,函数递减.
∴t=15时,ymax=1125,
∵1225>1125,
∴最近30天内,第5天达到最大值,最大值为1225元
【解析】应充分考虑自变量的范围不同销售的价格表达形式不同,分情况讨论日销售金额P关于时间t的函数关系,再根据分段函数不同段上的表达式,分别求最大值,最终取较大者分析即可获得问题解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网