题目内容
【题目】如图, 为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面垂直,且.
(1)求证:平面平面;
(2)在线段上是否存在了点,使得平面?并说明理由.
【答案】(1)证明见解析;(2)存在,见解析;
【解析】试题分析:(1)要证明平面平面,只需证平面,则只需证,
,再根据题目条件分别证明即可;(2)首先猜测存在 的中点满足平面,作辅助线,通过,由线面平行的判定定理,证明平面。
试题解析:
解:(1)因为平面平面,
平面平面,所以平面,
因为平面,所以,
又为圆的直径,所以,
因为,所以平面,
因为平面,所以平面平面.
(2)如图,取 的中点的中点,连接,
则 ,
又,所以,
所以四边形为平行四边形,
所以,
又平面平面,
所以平面,
即存在一点为的中点,使得平面.
练习册系列答案
相关题目
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为 , .