题目内容
【题目】在直角坐标系xOy中,直线l的参数方程是(t是参数).在以O为极点,x轴正半轴为极轴的极坐标系中,曲线.
(1)当,时,求直线l与曲线C的直角坐标方程;
(2)当时,若直线l与曲线C相交于A,B两点,设,且,求直线l的倾斜角.
【答案】(1),;(2)直线l的倾斜角为或.
【解析】
(1)利用加减消元法、极坐标与直角坐标互化公式进行求解即可;
(2)将直线l的参数方程代入曲线C的直角坐标方程中,利用参数的意义结合一元二次方程根与系数进行求解即可.
(1)当,时,,
,所以直线l与曲线C的直角坐标方程分别为:,;
(2)将直线l的参数方程代入曲线C的直角坐标方程中,得:,方程两根为,直线l过,因为
,所以有,或.
所以直线l的倾斜角为或.
【题目】为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数(单位:个)与一定范围内的温度(单位:)有关,于是科研人员在月份的天中随机选取了天进行研究,现收集了该种药物昆虫的组观察数据如表:
日期 | 日 | 日 | 日 | 日 | 日 |
温度 | |||||
产卵数个 |
(1)从这天中任选天,记这天药用昆虫的产卵数分别为、,求“事件,均不小于”的概率?
(2)科研人员确定的研究方案是:先从这组数据中任选组,用剩下的组数据建立线性回归方程,再对被选取的组数据进行检验.
①若选取的是月日与月日这组数据,请根据月日、日和日这三组数据,求出关于的线性回归方程?
②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
附公式:,.
【题目】随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:
来A城市发展的理由 | 人数 | 合计 | |
自然环境 | 1.森林城市,空气清新 | 200 | 300 |
2.降水充足,气候怡人 | 100 | ||
人文环境 | 3.城市服务到位 | 150 | 700 |
4.创业氛围好 | 300 | ||
5.开放且包容 | 250 | ||
合计 | 1000 | 1000 |
(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;
(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;
(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?
自然环境 | 人文环境 | 合计 | |
男 | |||
女 | |||
合计 |
附:,.
P() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |