题目内容

18.已知函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+m,\;\;0≤x≤1,\;\\ mx+5,\;\;\;\;\;\;\;\;\;\;x>1.\;\end{array}\right.$若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围为(-5,0).

分析 由分段函数知,分段讨论函数的单调性,从而求导可知f(x)在[0,1]上是增函数,从而化为函数f(x)在[0,1]与(1,+∞)上各有一个零点;从而求实数m的取值范围.

解答 解:当0≤x≤1时,
f(x)=2x3+3x2+m,
f′(x)=6x2+6x=6x(x+1)≥0;
故f(x)在[0,1]上是增函数,
故若使函数f(x)的图象与x轴有且只有两个不同的交点,
则函数f(x)在[0,1]与(1,+∞)上各有一个零点;
故m<0,
故$\left\{\begin{array}{l}{f(0)•f(1)≤0}\\{m+5>0}\end{array}\right.$,
解得,m∈(-5,0);
故答案为:(-5,0).

点评 本题考查了导数的综合应用及分段函数的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网