题目内容
【题目】(本题满分15分)如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】本题主要考查空间点、线、面位置关系,直线与平面学科&网所成的角等基础知识,同时考查空间想象能力和运算求解能力。满分15分。
(Ⅰ)如图,设PA中点为F,连结EF,FB.
因为E,F分别为PD,PA中点,所以EF∥AD且,
又因为BC∥AD,,所以
EF∥BC且EF=BC,
即四边形BCEF为平行四边形,所以CE∥BF,
因此CE∥平面PAB.
(Ⅱ)分别取BC,AD的中点为M,N.连结PN交EF于点Q,连结MQ.
因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,
在平行四边形BCEF中,MQ∥CE.
由△PAD为等腰直角三角形得
PN⊥AD.
由DC⊥AD,N是AD的中点得
BN⊥AD.
所以 AD⊥平面PBN,
由BC∥AD得 BC⊥平面PBN,
那么,平面PBC⊥平面PBN.
过点Q作PB的垂线,垂足为H,连结MH.
MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.
设CD=1.
在△PCD中,由PC=2,CD=1,PD=得CE=,
在△PBN中,由PN=BN=1,PB=得QH=,
在Rt△MQH中,QH=,MQ=,
所以sin∠QMH=,
所以,直线CE与平面PBC所成角的正弦值是.
练习册系列答案
相关题目