ÌâÄ¿ÄÚÈÝ
12£®P£¬QÊÇʵÊý¼¯RµÄÁ½¸ö·Ç¿Õ×Ó¼¯£¬Èôº¯Êýf£¨x£©Âú×ãµ±x¡ÊPʱ£¬$f£¨x£©=2x-\frac{1}{x}$£»µ±x¡ÊQʱ£¬f£¨x£©=x£®¼ÇA={y|y=f£¨x£©£¬x¡ÊP}£¬B={y|y=f£¨x£©£¬x¡ÊQ}£¬ÏÂÁÐËĸöÃüÌâÖУº£¨1£©ÈôP¡ÉQ=∅£¬ÔòA¡ÉB=∅
£¨2£©ÈôP¡ÉQ¡Ù∅£¬ÔòA¡ÉB¡Ù∅
£¨3£©ÈôP¡ÈQ=R£¬ÔòA¡ÈB=R
£¨4£©ÈôP¡ÈQ¡ÙR£¬ÔòA¡ÈB¡ÙR
ÔòÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©¸ö£®
A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
·ÖÎö ÓÉÌâÒ⣬$f£¨x£©=2x-\frac{1}{x}$Êǵ¥µ÷Ôöº¯Êý£¬Á½º¯ÊýµÄͼÏóµÄ½»µã×ø±êΪ£¨1£¬1£©£¬£¨-1£¬-1£©£¬¶ÔËĸöÃüÌâ·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÓÉÌâÒ⣬$f£¨x£©=2x-\frac{1}{x}$Êǵ¥µ÷Ôöº¯Êý£¬Á½º¯ÊýµÄͼÏóµÄ½»µã×ø±êΪ£¨1£¬1£©£¬£¨-1£¬-1£©£®
Ôò£¨1£©ÈôP¡ÉQ=∅£¬ÔòA¡ÉB=∅£¬²»ÕýÈ·£¬±ÈÈçP¡ÉQ=£¨1£¬+¡Þ£©£¬A¡ÉB=£¨1£¬+¡Þ£©£»
£¨2£©ÈôP¡ÉQ¡Ù∅£¬ÔòA¡ÉB¡Ù∅£¬²»ÕýÈ·£¬±ÈÈçP¡ÉQ=£¨-1£¬1£©£¬A¡ÉB=∅£»
£¨3£©ÈôP¡ÈQ=R£¬ÔòA¡ÈB=R£¬²»ÕýÈ·£¬±ÈÈçQ=£¨-¡Þ£¬2£©£¬P=[2£¬+¡Þ£©£¬A=[$\frac{7}{2}$£¬+¡Þ£©£¬B=£¨-¡Þ£¬2£©£¬A¡ÈB¡ÙR£»
£¨4£©ÈôP¡ÈQ¡ÙR£¬ÔòA¡ÈB¡ÙR£¬ÕýÈ·£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²é¼¯ºÏµÄ½»¡¢²¢ÔËË㣬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®Èôx£¬yÂú×ãx2+y2-8y+7=0£¬Ôòx+yµÄ×îСֵΪ£¨¡¡¡¡£©
A£® | 3 | B£® | 1 | C£® | 4-3$\sqrt{2}$ | D£® | 4+3$\sqrt{2}$ |
2£®ÒÑÖªN=$\frac{1}{lo{g}_{2}3}$+$\frac{1}{lo{g}_{5}3}$£¬ÔòN=£¨¡¡¡¡£©
A£® | N=2 | B£® | N=-2 | C£® | N£¼-2 | D£® | N£¾2 |