题目内容
若正三棱柱的棱长均相等,则与侧面所成角的正切值为___.
解析试题分析:设棱长为1.取中点,连接,根据正三棱柱的特点,,根据线面角的定义可知,为与侧面所成角,在中,.考点:线面角的定义.
如图,在正方体中,点为线段的中点。设点在线段上,直线与平面所成的角为,则的取值范围是 。
正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值的集合是____________.
四棱锥P ABCD的底面ABCD是边长为2的正方形,PA⊥底面ABCD且PA = 4,则PC与底面ABCD所成角的正切值为 .
如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中:①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的是________.(填序号)
已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.
下列命题:①一条直线在平面内的射影是一条直线;②在平面内射影是直线的图形一定是直线;③在同一平面内的射影长相等,则斜线长相等;④两斜线与平面所成的角相等,则这两斜线互相平行.其中真命题的个数是________.
设a、b为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且b⊥α,则a∥b;③若a∥α且a∥β,则α∥β;④若a⊥α且a⊥β,则α∥β.其中为真命题的是________.(填序号)
设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题:①⇒m⊥α;②⇒α⊥β;③⇒m∥n;④⇒m∥n其中为真命题的序号是________.