题目内容
已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.
2
解析
在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条
在三棱锥中,已知,, 一绳子从A点绕三棱锥侧面一圈回到点A的距离中,绳子最短距离是_____________.
设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:(1)若m⊥α,n∥α,则m⊥n(2)若α∥β,β∥γ,m⊥α,则m⊥γ(3)若m∥α,n∥α,则m∥n(4)若α⊥γ,β⊥γ,则α∥β其中真命题的序号是 .
若正三棱柱的棱长均相等,则与侧面所成角的正切值为___.
P为△ABC所在平面外一点,O为P在平面ABC内的射影.(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;(2)若PA⊥BC,PB⊥AC,则O是△ABC的________心;(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.
如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有__________.
已知A、B、C是不共线的三点,直线m垂直于直线AB和AC,直线n垂直于直线BC和AC,则直线m,n的位置关系是________.
已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:①若l?α,m?α,l∥β,m∥β,则α∥β;②若l?α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是______________(写出所有真命题的序号).