题目内容

一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.
(1)求在一次抽检后,设备不需要调整的概率;
(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.
(1)设Ai表示事件“在一次抽检中抽到的第i件产品为A类品”,
i=1,2.
Bi表示事件“在一次抽检中抽到的第i件产品为B类品”,
i=1,2.
C表示事件“一次抽检后,设备不需要调整”.
则C=A1·A2+A1·B2+B1·A2.
由已知P(Ai)=0.9,P(Bi)=0.05 i=1,2.
所以,所求的概率为
P(C)=P(A1·A2)+P(A1·B2)+P(B1·A2)
=0.92+2×0.9×0.05=0.9.
(2)由(1)知一次抽检后,设备需要调整的概率为
p=P()=1-0.9=0.1,依题意知ξ~B(3,0.1),ξ的分布列为
ξ
0
1
2
3
p
0.729
0.243
0.027
0.001
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网