题目内容
【题目】如图,直角梯形,,将沿折起来,使平面平面.如图,设为的中点,,的中点为.
()求证:平面.
()求平面与平面所成锐二面角的余弦值.
()在线段上是否存在点,使得平面,若存在确定点的位置,若不存在,说明理由.
【答案】(1)证明见解析;(2);(3)不存在,理由见解析.
【解析】
(1)通过面面垂直的性质证得;
(2)建立空间直角坐标系,计算出两个半平面的法向量所成角的余弦值即可得解;
(3)假设存在,设出点的坐标,利用求解,找出矛盾.
(1),的中点为,连接,必有,
由题:平面平面,交线为,平面,
根据面面垂直的性质可得平面;
(2)取中点,连接,则,
由图1直角梯形可知,为正方形,
,
所以
由(1)平面,所以两两互相垂直,分别以为轴的正方向建立空间直角坐标系如图所示,
则,,
所以,,
设平面的法向量为,
则,取,则
即平面的法向量为,平面,
取平面的法向量
平面与平面所成锐二面角的余弦值;
(3)假设线段上是否存在点,使得平面,设,
所以,必有
即,,解得,与矛盾,
所以线段上不存在点,使得平面.
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:
年龄(岁) | |||||
支持“延迟退休年龄政策”人数 | 15 | 5 | 15 | 28 | 17 |
(I)由以上统计数据填写下面的列联表;
年龄低于45岁的人数 | 年龄不低于45岁的人数 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
参考公式:
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:
分组(岁) | 频数 |
合计 |
(1)求频率分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.
【题目】某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.
x(万元) | 3 | 5 | 7 | 9 | 11 |
y(万元) | 8 | 10 | 13 | 17 | 22 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?
相关公式:,.