题目内容
【题目】如图,在直三棱柱ABC-A1B1C1中,AC=BC,点M为棱A1B1的中点.
求证:(1)AB∥平面A1B1C;
(2)平面C1CM⊥平面A1B1C.
【答案】(1)见解析;(2)见解析
【解析】
(1)证明四边形AA1B1B是平行四边形,得出AB∥A1B1,故而AB∥平面A1B1C;
(2)由C1M⊥A1B1,CC1⊥B1A1,得出B1A1⊥平面C1CM,从而平面C1CM⊥平面A1B1C.
证明:(1)∵AA1∥BB1,AA1=BB1,
∴四边形AA1B1B是平行四边形,
∴AB∥A1B1,
又AB平面A1B1C,A1B1平面A1B1C,
∴AB∥平面A1B1C.
(2)由(1)证明同理可知AC=A1C1,BC=B1C1,
∵AB=BC,∴A1B1=B1C1,
∵M是A1B1的中点,
∴C1M⊥A1B1,
∵CC1⊥平面A1B1C1,B1A1平面A1B1C1,
∴CC1⊥B1A1,
又CC1∩C1M=C1,
∴B1A1⊥平面C1CM,
又B1A1平面A1B1C1,
∴平面C1CM⊥平面A1B1C.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数(个) | 16 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是月与月的两组数据,请根据至月份的数据,求出 关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.1010pic.com/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,