题目内容
【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=( )x , 数列{bn}满足条件b1=2,f(bn+1)= ,(n∈N*),若cn= ,求数列{cn}的前n项和Tn .
【答案】解:(Ⅰ)当n=1,a1=2a1﹣2,即a1=2,
当n≥2时,Sn﹣1=2an﹣1﹣2,
an=Sn﹣Sn﹣1=2an﹣2﹣(2an﹣1﹣2)=2an﹣2an﹣1 ,
∴an=2an﹣1 ,
∴数列{an}是以2为首项,2为公比的等比数列,
∴an=2×2n﹣1=2n ,
数列{an}的通项公式an=2n;
(Ⅱ∵)f(x)=( )x , f(bn+1)= ,(n∈N*),
∴ = ,
∴ = ,即bn+1=bn+3,
∴bn+1﹣bn=3,
b1=f(﹣1)=2,
∴数列{bn}是以2为首项,3为公差的等差数列,
∴bn=3n﹣1,
cn= = ,
∴Tn= + + +…+ + ,
Tn= + + +…+ + ,
两式相减得: Tn=1+ + + +…+ ﹣ ,
=1+ × ﹣ ,
=1+ (1﹣ )﹣ ,
∴Tn=2+3(1﹣ )﹣ ,
=2+3 ﹣ ,
∴Tn=5
【解析】(Ⅰ)由当n=1,a1=2,当n≥2时,Sn﹣1=2an﹣1﹣2,an=Sn﹣Sn﹣1=2an﹣2an﹣1 , 可知an=2an﹣1 , 数列{an}是以2为首项,2为公比的等比数列,数列{an}的通项公式an=2n;(Ⅱ)f(bn+1)= ,(n∈N*),代入即可求得bn+1=bn+3,b1=f(﹣1)=2,数列{bn}是以2为首项,3为公差的等差数列,cn= = ,利用“错位相减法”即可求得,数列{cn}的前n项和Tn .
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
【题目】为调查某社区居民的业余生活状况,研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
休闲方式 | 看电视 | 看书 | 合计 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合计 | 20 | 60 | 80 |
(1)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段居民的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X.求X的数学期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )