题目内容
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.
图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).
(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择课
程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.
①当时,写出的所有可能取值;
②若选择课程的同学都参加科学营活动,求元的概率.
【答案】(Ⅰ) 12,8; (Ⅱ)(ⅰ) ;(ⅱ) .
【解析】【试题分析】(1)借助题设条件运用题设中提供频率分布直方图进行求解;(2)依据题设借助列举法将所有可能都列举出来,运用古典概型的计算公式进行分析求解:
(Ⅰ)选择人文类课程的人数为(100+200+400+200+300) 1%=12(人);
选择自然科学类课程的人数为(300+200+300) 1%=8(人).
(Ⅱ)(ⅰ)当缴纳费用S=4000时, 只有两种取值情况: ;
(ⅱ)设事件若选择G课程的同学都参加科学营活动,缴纳费用总和S超过4500元.
在“组M”中,选择F课程和G课程的人数分别为3人和2人.
由于选择G课程的两名同学都参加,下面考虑选择F课程的3位同学参加活动的情况.设每名同学报名参加活动用a表示,不参加活动用b表示,则3名同学报名参加活动的情况共有以下8种情况:aaa,aab,aba,baa,bba,bab,abb,bbb.
当缴纳费用总和S超过4500元时,选择F课程的同学至少要有2名同学参加,有如下4种:aaa,aab,aba,baa.所以, .