题目内容
【题目】设数列{an},其前n项和Sn=﹣3n2 , {bn}为单调递增的等比数列,b1b2b3=512,a1+b1=a3+b3 .
(1)求数列{an},{bn}的通项;
(2)若cn= ,数列{cn}的前n项和Tn , 求证: <1.
【答案】
(1)解:∵数列{an},其前n项和Sn=﹣3n2,
∴a1=﹣3,
当n≥2时,an=Sn﹣Sn﹣1=(﹣3n2+3(n﹣1)2=﹣6n+3,
当n=1时,上式也成立,
∴an=﹣6n+3,
∵{bn}为单调递增的等比数列,b1b2b3=512,a1+b1=a3+b3,
∴ ,
解得b1=4,q=2或 (舍),
∴bn=2n+1.
(2)证明:
∴Tn=c1+c2+c3+…+cn
=
=
∵{ Tn} 是递增数列,
∴
【解析】(1)由已知得a1=﹣3,当n≥2时,an=Sn﹣Sn﹣1=(﹣3n2+3(n﹣1)2=﹣6n+3,由此能求出an=﹣6n+3;由已知得 ,由此能求出bn=2n+1 . (2) ,由此利用裂项求和法能证明 <1.
【题目】某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
组号 | 第一组 | 第二组 | 第二组 | 第四组 |
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 6 | 4 | 22 | 20 |
频率 | 0.06 | 0.04 | 0.22 | 0.20 |
组号 | 第五组 | 第六组 | 第七组 | 第八组 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 18 | a | 10 | 5 |
频率 | b | 0.15 | 0.10 | 0.05 |
(1)若频数的总和为c,试求a,b,c的值;
(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,令第七组被抽中的学生数为随机变量ξ,求随机变量ξ的分布列和数学期望;
(3)估计该校本次考试的数学平均分.