题目内容
【题目】已知数列、,其中, ,数列满足,,数列满足.
(1)求数列,的通项公式;
(2)是否存在自然数,使得对于任意有恒成立?若存在,求出的最小值;
(3)若数列满足,求数列的前项和.
【答案】(1) .
(2) 的最小值为16.
(3) .
【解析】试题分析:第一问将式子变形,得到两项的比值,之后用累乘法求得通项公式,一定需要注意对进行验证;第二问转化成最值来处理,第三问需要对为奇数和为偶数两种情况进行讨论求得结果.
(1)由,即,.
又,所以
. ……………………2分
当时,上式成立,故 ……………………3分
因为,所以是首项为2,公比为2的等比数列,
故. ……………………5分
(2) 由(1)知,则
.……………………7分
假设存在自然数,使得对于任意有恒成立,即恒成立,由,解得. ……………………9分
所以存在自然数,使得对于任意有恒成立,此时, 的最小值为16. ……………………………………10分
(3)当为奇数时,
;………………13分
当为偶数时,
. ………………15分
因此
………………16分
练习册系列答案
相关题目