题目内容
【题目】无穷数列满足: 为正整数,且对任意正整数, 为前项, , , 中等于的项的个数.
(Ⅰ)若,请写出数列的前7项;
(Ⅱ)求证:对于任意正整数,必存在,使得;
(Ⅲ)求证:“”是“存在,当时,恒有 成立”的充要条件。
【答案】(Ⅰ)2,1,1,2,2,3,1;(Ⅱ)证明见解析;(Ⅲ)证明见解析.
【解析】试题分析:(Ⅰ)根据题设条件,直接写出即可;
(Ⅱ)假设存在正整数,使得对任意的, ,利用反证法证明即可;
(Ⅲ)可分充分性和必要性证明即可,当时,得数列满足, ,当为偶数,则;当为奇数,则,即可证得充分性;再作出必要性的证明即可.
试题解析:
(Ⅰ)2,1,1,2,2,3,1
(Ⅱ)假设存在正整数,使得对任意的, . 由题意,
考虑数列的前项:
, , ,…,
其中至少有项的取值相同,不妨设
此时有: ,矛盾.
故对于任意的正整数,必存在,使得.
(Ⅲ)充分性:
当时,数列为, , , , , , ,…, , , , ,…
特别地, , ,故对任意的
(1)若为偶数,则
(2)若为奇数,则
综上, 恒成立,特别地,取有当时,恒有成立
方法一:假设存在(),使得“存在,当时,恒有成立”
则数列的前项为
, , , , , , , ,…, , , ,
, , , , ,…, , , ,
, , ,…, , , ,
, , , ,
, ,
后面的项顺次为
, , , ,…, ,
, , , ,…, ,
, , , ,…, ,
……
对任意的,总存在,使得, ,这与矛盾,故若存在,当时,恒有成立,必有
方法二:若存在,当时, 恒成立,记.
由第(2)问的结论可知:存在,使得(由s的定义知)
不妨设是数列中第一个大于等于的项,即均小于等于s.
则.因为,所以,即且为正整数,所以.
记,由数列的定义可知,在中恰有t项等于1.
假设,则可设,其中,
考虑这t个1的前一项,即,
因为它们均为不超过s的正整数,且,所以中一定存在两项相等,
将其记为a,则数列中相邻两项恰好为(a,1)的情况至少出现2次,但根据数列的定义可知:第二个a的后一项应该至少为2,不能为1,所以矛盾!
故假设不成立,所以,即必要性得证!
综上,“”是“存在,当时,恒有成立”的充要条件.
【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小,速度越快,单位是MIPS)
测试1 | 测试2 | 测试3 | 测试4 | 测试5 | 测试6 | 测试7 | 测试8 | 测试9 | 测试10 | 测试11 | 测试12 | |
品牌A | 3 | 6 | 9 | 10 | 4 | 1 | 12 | 17 | 4 | 6 | 6 | 14 |
品牌B | 2 | 8 | 5 | 4 | 2 | 5 | 8 | 15 | 5 | 12 | 10 | 21 |
(Ⅰ)从品牌A的12次测试中,随机抽取一次,求测试结果小于7的概率;
(Ⅱ)从12次测试中,随机抽取三次,记X为品牌A的测试结果大于品牌B的测试结果的次数,求X的分布列和数学期望E(X);
(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记为这两人中观看升旗的时刻早于7:00的人数,求的 分布列和数学期望;
(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为),记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断与的大小(只需写出结论).