题目内容
【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2 sin( ),直线C的极坐标方程为ρsinθ=1,射线θ=φ,θ= +φ(φ∈[0,π])与曲线C1分别交异于极点O的两点A,B.
(I)把曲线C1和C2化成直角坐标方程,并求直线C2被曲线C1截得的弦长;
(II)求|OA|2+|OB|2的最小值.
【答案】解:(I)曲线C1的极坐标方程为ρ=2 sin( ),∴ρ=2sinθ+2cosθ,
∴ρ2=2ρcosθ+2ρsinθ,
∴x2+y2=2x+2y,
即(x﹣1)2+(y﹣1)2=2为圆C的直角坐标方程;
直线C2的极坐标方程为ρsinθ=1,直角坐标方程为y=1
y=1,x=1± ,∴直线C2被曲线C1截得的弦长=2
(II)|OA|=2 sin(φ+ ),|OB|=2 sin( +φ+ )=2 cosφ
|OA|2+|OB|2=8sin2(φ+ )+8cos2φ=4 sin(2φ+ )+8,
∵φ∈[0,π],
∴2φ+ ∈[ , ],
∴|OA|2+|OB|2的最小值为8﹣4
【解析】(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 进行代换即得直角坐标方程,并求直线C2被曲线C1截得的弦长;(II)|OA|2+|OB|2=8sin2(φ+ )+8cos2φ=4 sin(2φ+ )+8,即可求|OA|2+|OB|2的最小值.
【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:
(1)求关于的回归直线方程;
(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.
附:回归直线方程中,
,.