题目内容
【题目】有最大值,且最大值大于.
(1)求的取值范围;
(2)当时,有两个零点,证明:.
(参考数据:)
【答案】(1);(2)证明见解析.
【解析】
(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;
(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.
(1)函数的定义域为,且.
当时,对任意的,,
此时函数在上为增函数,函数为最大值;
当时,令,得.
当时,,此时函数单调递增;
当时,,此时函数单调递减.
所以,函数在处取得极大值,亦即最大值,
即,解得.
综上所述,实数的取值范围是;
(2)当时,,定义域为,
,当时,;当时,.
所以,函数的单调递增区间为,单调递减区间为.
由于函数有两个零点、且,,
,
构造函数,其中,
,
令,,当时,,
所以,函数在区间上单调递减,则,则.
所以,函数在区间上单调递减,
,,
即,即,
,且,而函数在上为减函数,
所以,,因此,.
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |