题目内容
【题目】已知是双曲线的两个焦点,圆与双曲线位于轴上方的两个交点分别为,若,则双曲线的离心率为_______.
【答案】
【解析】
连接NF1,MF2,由双曲线的定义,可得|NF1|=2a+2c,|MF1|=2c﹣2a,
在△MF1F2中,和△NF1F2中,表示出cos∠MF1F2, cos∠NF2F1由,可得∠MF1F2+∠NF2F1=π,即有cos∠MF1F2+cos∠NF2F1=0,化简整理,由离心率公式计算即可得到所求值.
如图:
连接NF1,MF2,
由双曲线的定义,可得|MF2|﹣|MF1|=2a,
|NF1|﹣|NF2|=2a,
由|MF2|=|NF2|=2c,
可得|NF1|=2a+2c,|MF1|=2c﹣2a,
在等腰△MF1F2中,可得cos∠MF1F2,
在△NF1F2中,可得cos∠NF2F1,
由,可得∠MF1F2+∠NF2F1=π,即有cos∠MF1F2+cos∠NF2F1=0,
可得0,
化为2c2﹣3ac﹣a2=0,
得2e2﹣3e﹣1=0,解得e或e(舍去),
故答案为:.
练习册系列答案
相关题目