题目内容
15.在△ABC中,A=30°,AB=$\sqrt{3}$,BC=1,则△ABC的面积等于$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$.分析 利用余弦定理列出关系式,将cosA,a与c的值代入求出b的值,再由于b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答 解:∵在△ABC中,∠A=30°,AB=c=$\sqrt{3}$,BC=a=1,
∴由余弦定理得:a2=b2+c2-2bccosA,
即1=b2+3-3b,
解得:b=1或b=2,
则S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$.
故答案为:$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$.
点评 此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目
20.某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)若函数f(x)的图象向左平移$\frac{π}{6}$个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.
ωx+ϕ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+ϕ) | 0 | 5 | -5 | 0 |
(2)若函数f(x)的图象向左平移$\frac{π}{6}$个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.
5.已知函数f(x)=x(1+a|x|)(a∈R),设关于x的不等式f(x+a)<f(x)的解集为A,若$[{-\frac{1}{2},\frac{1}{2}}]⊆A$,则实数a的取值范围是( )
A. | (-1,0) | B. | $({-1,\frac{{1-\sqrt{5}}}{2}})$ | C. | $({\frac{{1-\sqrt{5}}}{2},0})$ | D. | $({0,\frac{{1+\sqrt{5}}}{2}})$ |