题目内容
已知△ABC的三个顶点在同一球面上,若∠BAC=90°,AB=AC=2,球心O到平面ABC的距离为1,则该球的半径为 .
【答案】分析:由“∠BAC=90°,AB=AC=2,”得到BC即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求.
解答:解:如图所示:
取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,
在Rt△OMB中,OM=1,MB=,
∴OA=,即球球的半径为.
故答案为:.
点评:本题考查球的有关计算问题,点到平面的距离,是基础题.
解答:解:如图所示:
取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,
在Rt△OMB中,OM=1,MB=,
∴OA=,即球球的半径为.
故答案为:.
点评:本题考查球的有关计算问题,点到平面的距离,是基础题.
练习册系列答案
相关题目
已知△ABC的三个顶点在半径为1的球面上,且AB=1,BC=
.若A、C两点的球面距离为
,则球心O到平面ABC的距离为( )
3 |
π |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|