题目内容

已知a>0且a≠1,设命题p:函数y=ax+1在R上单调递减,命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.
∵y=ax+1单调递减
∴P:0<a<1
∵曲线y=x2+(2a-3)x+1与x轴交于不同的两点
∴△=(2a-3)2-4>0
∴q:a
5
2
或a
1
2

∵“p∨q”为真,且“p∧q”为假
∴p真q假,或p假q真
当p真q假时,
0<a<1
a>
5
2
或a<
1
2

∴0<a<
1
2

当p假q真时,
a>1
a>
5
2
或a<
1
2

∴a
5
2

综上可得,a
5
2
或0<a<
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网