题目内容
设m为实数,函数f(x)=-
+2x+m,x∈R
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当m≤1且x>0时,
>2
+2mx+1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209551379.png)
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当m≤1且x>0时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209551379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209582338.png)
(Ⅰ)增区间
,减区间
;(Ⅱ)构造函数
,再证明
即可得证.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209598626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209629641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209645895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209660660.png)
试题分析:(Ⅰ)利用求导的方法求得单调区间,再求极值;(Ⅱ)先构造
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209645895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209707393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209723763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209738442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209769535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209660660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209801779.png)
试题解析:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212098161059.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209847607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209863367.png)
易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209598626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209910622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209910896.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209629641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021210097618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209910896.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021210128447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021210144658.png)
(Ⅱ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209645895.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209707393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240212101911767.png)
由(Ⅰ)知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209707393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021210222869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209723763.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209738442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209769535.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209660660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021209801779.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容