题目内容
7.C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+C${\;}_{6}^{3}$+…+C${\;}_{20}^{17}$的值为( )A. | C${\;}_{21}^{3}$ | B. | C${\;}_{20}^{3}$ | C. | C${\;}_{20}^{4}$ | D. | C${\;}_{21}^{4}$ |
分析 利用组合数公式解答.
解答 解:原式=${C}_{4}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+C${\;}_{6}^{3}$+…+C${\;}_{20}^{17}$=${C}_{5}^{1}$+C${\;}_{5}^{2}$+C${\;}_{6}^{3}$+…+C${\;}_{20}^{17}$=${C}_{6}^{2}$+C${\;}_{6}^{3}$+…+C${\;}_{20}^{17}$=${C}_{20}^{16}$+C${\;}_{20}^{17}$=${C}_{21}^{17}$=${C}_{21}^{4}$;
故选D
点评 本题考查了组合数公式的运用;${C}_{n}^{m}+{C}_{n}^{m-1}={C}_{n+1}^{m}$.
练习册系列答案
相关题目
17.i为虚数单位,则(1-i)2的虚部为( )
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
18.已知点P在曲线y=x3-x+$\frac{2}{3}$上移动,设点P处切线的倾斜角为α,则α的取值范围是( )
A. | [0,$\frac{π}{2}$] | B. | [0,$\frac{π}{2}$]∪(-$\frac{π}{2}$,0) | C. | [$\frac{3π}{4}$,π] | D. | [0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π) |
19.将点(2,3)变成点(3,2)的伸缩变换是( )
A. | $\left\{\begin{array}{l}x'=\frac{2}{3}x\\ y'=\frac{3}{2}y\end{array}\right.$ | B. | $\left\{\begin{array}{l}x'=\frac{3}{2}x\\ y'=\frac{2}{3}y\end{array}\right.$ | C. | $\left\{\begin{array}{l}x'=y\\ y'=x\end{array}\right.$ | D. | $\left\{\begin{array}{l}x'=x+1\\ y'=y-1\end{array}\right.$ |
16.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的性别与看营养列联表:
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)从(1)中的5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;
(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
男 | 女 | 总计 | |
看营养说明 | 50 | 30 | 80 |
不看营养说明 | 10 | 20 | 30 |
总计 | 60 | 50 | 110 |
(2)从(1)中的5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;
(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |