题目内容

【题目】“垛积术”是我国古代数学的重要成就之一.南宋数学家杨辉在《详解九章算法》中记载了“方垛”的计算方法:“果子以垛,下方十四个,问计几何?术曰:下方加一,乘下方为平积.又加半为高,以乘下方为高积.如三而一.”意思是说,将果子以方垛的形式摆放(方垛即每层均为正方形,自下而上每层每边果子数依次递减1个,最上层为1个),最下层每边果子数为14个,问共有多少个果子?计算方法用算式表示为.利用“方垛”的计算方法,可计算最下层每边果子数为14个的“三角垛”(三角垛即每层均为正三角形,自下而上每层每边果子数依次递减1个,最上层为1个)共有果子数为(

A.420B.560C.680D.1015

【答案】B

【解析】

由题意可得,最下层每边为个果子的“方垛”总的果子数的计算式为,再由最下层每边为个果子的“三角操”自上而下的第层果子数为,得层“三角操”总的果子数为,最后用分组求和的方法即可求解.

由题意知,最下层每边为14个果子的“方垛”总的果子数的计算式为

所以可得最下层每边为个果子的“方垛”总的果子数的计算式为

最下层每边为个果子的“三角垛”自上而下的第层果子数为,所以层“三角垛”总的果子数为,因为

所以取,可得“三角垛”的果子总数为560.

故选:B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网