题目内容

【题目】某年数学竞赛请自以为来自X星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题;然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答的题目则跳过(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答题),这样所有的题目均有作答,设这位选手可能的答题次序有n种,则n的值为(

A.512B.511C.1024D.1023

【答案】A

【解析】

按照规则,相当于将1,2,3,4,5,6,7,8,9,10按照规则排序,要求放在1左侧的数字从大到小,右侧从小到大(1可以在两端),设1左侧有n个数字,不同的排序方法有种,一共有.

设从最后一题(10)开始往前看直到第2题,做了道题,这n道题的顺序只能从大到小或者不答题,则不同的答题情况有种,则剩下的10-n道题只能一种答法,

所以可能的答题次序一共有.

故选:A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网