题目内容
【题目】每年的4月23日是“世界读书日”,某校研究性学习小组为了解本校学生的阅读情况,随机调查了本校200名学生在这一天的阅读时间 (单位:分钟),将样本数据整理后绘制成如图的样本频率分布直方图.
(1)求的值;
(2)试估计该学校所有学生在这一天的平均阅读时间;
(3)若用分层抽样的方法从这200名学生中,抽出25人参加交流会,则阅读时间为, 的两组中各抽取多少人?
【答案】(1) ;(2) ;(3) 阅读时间在分钟的应选人,
阅读时间在分钟的应选人.
【解析】试题分析:(1)由频率分布直方图的性质易得: (2)由频率分布直方图确定平均数;(3)根据分层抽样性质确定抽取人数.
试题解析:
(1)由已知,得,
解得.
(2)由样本的频率分布直方图,估计该学校所有学生在这一天的平均阅读时间为:
(分钟).
(3)阅读时间在分钟的人数为,
阅读时间在分钟的人数为,
用分层抽样选人的抽样比为,
∴阅读时间在分钟的应选人,
阅读时间在分钟的应选人.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x/摄氏度 | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验。
(Ⅰ)求选取的2组数据恰好是不相邻2天的数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的2组数据,请根据12月2日至4日的数据,求出y关于x的线性回归方程,并判断该线性回归方程是否可靠(若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的
附:回归方程 中斜率和截距的最小二乘估计公式分别为: