题目内容
1.若等差数列{an}满足a12+a32=2,则$\frac{{{a}_{3}}^{2}+{{a}_{4}}^{2}}{{{a}_{4}}^{2}+{{a}_{5}}^{2}}$的取值范围是( )A. | [1,3] | B. | [$\sqrt{5}$-1,$\sqrt{5}$十1] | C. | [3-2$\sqrt{2}$,3+2$\sqrt{2}$] | D. | [4-2$\sqrt{3}$,4+2$\sqrt{3}$]. |
分析 利用等差数列的性质求出a4yu 公差d的范围,然后利用基本不等式求解表达式的范围.
解答 解:设等差数列的公差为d,由a12+a32=2,得
$({a}_{4}-3d)^{2}+({a}_{4}-d)^{2}=2$,
化为:$5{d}^{2}-4{a}_{4}d+{{a}_{4}}^{2}-1=0$,
由判别式△≥0,得:16${{a}_{4}}^{2}$-20(${{a}_{4}}^{2}$-1)≥0,
即${{a}_{4}}^{2}≤5$,
同样可以算出d2≤1.
则$\frac{{{a}_{3}}^{2}+{{a}_{4}}^{2}}{{{a}_{4}}^{2}+{{a}_{5}}^{2}}$=$\frac{{{(a}_{4}-d)}^{2}+{{a}_{4}}^{2}}{{{a}_{4}}^{2}+({{a}_{4}+d)}^{2}}$=$\frac{{2{a}_{4}}^{2}-{2{a}_{4}d+d}^{2}}{{{2a}_{4}}^{2}+{2{a}_{4}d+d}^{2}}$=1-$\frac{{4{a}_{4}d}^{\;}}{{{2a}_{4}}^{2}+{2{a}_{4}d+d}^{2}}$=1-$\frac{4}{\frac{{2a}_{4}}{d}+\frac{d}{{a}_{4}}+2}$,
当$\frac{d}{{a}_{4}}为正时$,1-$\frac{4}{\frac{{2a}_{4}}{d}+\frac{d}{{a}_{4}}+2}$≥1-$\frac{4}{2\sqrt{\frac{{2a}_{4}}{d}×\frac{d}{{a}_{4}}}+2}$=3-2$\sqrt{2}$.
满足等号的条件,$\frac{2{a}_{4}}{d}=\frac{d}{{a}_{4}}$,
$\frac{d}{{a}_{4}}为负时$,1-$\frac{4}{\frac{{2a}_{4}}{d}+\frac{d}{{a}_{4}}+2}$=1-$\frac{4}{-(-\frac{{2a}_{4}}{d}+\frac{d}{-{a}_{4}})+2}$
=1+$\frac{4}{(-\frac{{2a}_{4}}{d}+\frac{d}{-{a}_{4}})-2}$≤$1+\frac{4}{2\sqrt{(-\frac{{2a}_{4}}{d})×(\frac{d}{-{a}_{4}})}-2}$=3+2$\sqrt{2}$,
$\frac{{{a}_{3}}^{2}+{{a}_{4}}^{2}}{{{a}_{4}}^{2}+{{a}_{5}}^{2}}$的取值范围是:[3-2$\sqrt{2}$,3+2$\sqrt{2}$].
故选:C.
点评 本题考查数列的基本性质的应用,基本不等式求解表达式的最值的求法,考查计算能力.
A. | (-∞,-2) | B. | (-2,4) | C. | (-2,+∞) | D. | (-4,4) |