题目内容

4.已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+2=0},且B⊆A,C⊆A,求实数a、m的取值范围.

分析 化简A={x|x2-3x+2=0}={1,2},从而讨论求实数a、m的取值范围.

解答 解:A={x|x2-3x+2=0}={1,2},
方程x2-ax+(a-1)=0的解为x=1或x=a-1(a≠2);
∵B⊆A,
∴a-1=1或a-1=2,
故a=2或a=3;
若C={x|x2-mx+2=0}=∅,即△=m2-8<0;
即-2$\sqrt{2}$<m<2$\sqrt{2}$时,成立;
若C={x|x2-mx+2=0}≠∅,则m=1+2=3;
故实数m的取值范围为(-2$\sqrt{2}$,2$\sqrt{2}$)∪{3}.

点评 本题考查了集合的包含关系的应用及分类讨论的思想应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网