题目内容
(本题满分14分)
如图,在三棱拄中,侧面,已知
(Ⅰ)求证:;
(Ⅱ)试在棱(不包含端点上确定一点的位置,使得;
(Ⅲ) 在(Ⅱ)的条件下,求二面角的平面角的正切值.
(本题满分12分)
证(Ⅰ)因为侧面,故
在中, 由余弦定理有
故有
而 且平面
(Ⅱ)由
从而 且 故
不妨设 ,则,则
又 则
在中有 从而(舍负)
故为的中点时,
法二:以为原点为轴,设,则 由得 即
化简整理得 或
当时与重合不满足题意
当时为的中点
故为的中点使
(Ⅲ)取的中点,的中点,的中点,的中点
连则,连则,连则
连则,且为矩形,
又 故为所求二面角的平面角
在中,
法二:由已知, 所以二面角的平面角的大小为向量与的夹角
因为
故
.
练习册系列答案
相关题目