搜索
题目内容
若函数
的导函数
,则
的单调递减区间是
.
试题答案
相关练习册答案
试题分析:由
得
,即得
的单调递减区间是
,所以由
得
的单调递减区间
.
练习册系列答案
完美读法系列答案
美文赏读系列答案
必考点灵通复习法系列答案
名校调研系列卷每周一考系列答案
同步解析与测评初中总复习指导与训练系列答案
专题分类卷系列答案
英语组合阅读系列答案
学习指导用书系列答案
精讲精练宁夏人民教育出版社系列答案
课课练强化练习系列答案
相关题目
设函数
,若
时,
有极小值
,
(1)求实数
的取值;
(2)若数列
中,
,求证:数列
的前
项和
;
(3)设函数
,若
有极值且极值为
,则
与
是否具有确定的大小关系?证明你的结论.
某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为
元/本(9≤
≤11),预计一年的销售量为
万本.
(1)求该出版社一年的利润
(万元)与每本书的定价
的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润
最大,并求出
的最大值
.
已知函数
(1)当
时,求函数
的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.
,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
已知
,其中
为常数.
(Ⅰ)当函数
的图象在点
处的切线的斜率为1时,求函数
在
上的最小值;
(Ⅱ)若函数
在
上既有极大值又有极小值,求实数
的取值范围;
(Ⅲ)在(Ⅰ)的条件下,过点
作函数
图象的切线,试问这样的切线有几条?并求这些切线的方程.
已知函数
,
.
(Ⅰ)当
,
时,求
的单调区间;
(2)当
,且
时,求
在区间
上的最大值.
已知函数
,其中
为正实数,
.
(I)若
是
的一个极值点,求
的值;
(II)求
的单调区间.
若函数
在
上单调递增,那么实数
的取值范围是( )
A.
B.
C.
D.
已知函数
满足
,且当
时,
,则( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总