题目内容

【题目】如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求证:CD⊥AM;
(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.

【答案】(Ⅰ)证明:取CD的中点O,连接OB,OM. ∵△BCD是等边三角形,
∴OB⊥CD.
∵△CMD是等腰直角三角形,∠CMD=90°,
∴OM⊥CD.
∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM平面CMD,
∴OM⊥平面BCD.
又∵AB⊥平面BCD,
∴OM∥AB.
∴O,M,A,B四点共面.
∵OB∩OM=O,OB平面OMAB,OM平面OMAB,
∴CD⊥平面OMAB.∵AM平面OMAB,
∴CD⊥AM.
(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.
∵△BCD是等边三角形,BC=2,
,CD=2.
在Rt△ANM中,
∵△CMD是等腰直角三角形,∠CMD=90°,

∴AB=AN+NB=AN+OM=2.
以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,
则M(0,0,1), ,D(﹣1,0,0),

设平面BDM的法向量为 =(x,y,z),
由n ,n ,∴
令y=1,得 =
设直线AM与平面BDM所成角为θ,
= =
∴直线AM与平面BDM所成角的正弦值为

【解析】(I)取CD的中点O,连接OB,OM,则可证OM∥AB,由CD⊥OM,CD⊥OB得出CD⊥平面ABOM,于是CD⊥AM;(II)以O为原点建立空间直角坐标系,求出 和平面BDM的法向量 ,则直线AM与平面BDM所成角的正弦值为|cos< >|.
【考点精析】解答此题的关键在于理解空间中直线与直线之间的位置关系的相关知识,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网