题目内容
已知直三棱柱的三视图如图所示,且是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为;(Ⅲ)当点为线段中点时,与成角.
解析试题分析:(Ⅰ)为了证明∥平面,需要在平面内找一条与平行的直线,而要找这条直线一般通过作过且与平面相交的平面来找.在本题中联系到为中点,故连结,这样便得一平面,接下来只需证与交线平行即可.对(Ⅱ)(Ⅲ)两个小题,由于是直三棱柱,且,故两两垂直,所以可以以为坐标轴建立空间直角坐标系来解决.
试题解析:(Ⅰ)证明:根据三视图知:三棱柱是直三棱柱,,连结,交于点,连结.由 是直三棱柱,得 四边形为矩形,为的中点.又为中点,所以为中位线,所以 ∥, 因为 平面,平面, 所以 ∥平面. 4分
(Ⅱ)解:由是直三棱柱,且,故两两垂直.
如图建立空间直角坐标系.
,则.
所以 ,
设平面的法向量为,则有
所以
取,得. 6分
易知平面的法向量为. 7分
由二面角是锐角,得 . 8分
所以二面角的余弦值为.
(Ⅲ)解:假设存在满足条件的点.
因为在线段上,,,故可设,其中.
所以 ,. 9分
因为与成
练习册系列答案
相关题目