题目内容
【题目】已知函数,其中,为的导函数,设,且恒成立.
(1)求的取值范围;
(2)设函数的零点为,函数的极小值点为,求证:.
【答案】(1);(2)证明见解析
【解析】
(1)先对函数求导,得到,推出,求导,得到,解对应不等式,得到单调性,求出其最小值,再根据恒成立,即可得出结果;
(2)先设,求导得.
设,对其求导,判定单调性,从而得到函数单调性,得到是函数的极小值点,得到,再由(1)得时,,推出所以,得到,得到函数在区间上单调递增,再由题意,即可得出结论成立.
(1)由题设知,,
,,
由,得,所以函数在区间上是增函数;
由,得,所以函数在区间上是减函数.
故在处取得最小值,且.
由于恒成立,所以,得,
所以的取值范围为;
(2)设,则.
设,
则,
故函数在区间上单调递增,由(1)知,,
所以,,
故存在,使得,
所以,当时,,,函数单调递减;
当时,,,函数单调递增.
所以是函数的极小值点.因此,即.
由(1)可知,当时,,即,整理得,
所以.
因此,即.
所以函数在区间上单调递增.
由于,即,
即,
所以.
又函数在区间上单调递增,所以.
练习册系列答案
相关题目