题目内容
已知向量
=(cos
,sin
),
=(cos
,-sin
),θ∈[0,
],
(I)求
的最大值和最小值;
(II)若|k
+
|=
|
-k
|(k∈R),求k的取值范围.
. |
a |
3θ |
2 |
3θ |
2 |
. |
b |
θ |
2 |
θ |
2 |
π |
3 |
(I)求
| ||||
|
|
(II)若|k
. |
a |
. |
b |
3 |
. |
a |
. |
b |
(1)∵
=(cos
,sin
),
=(cos
,-sin
),
∴
•
=cos
cos
-sin
sin
=cos2θ
∵|
+
|2=
2+
2+2
•
=2+2cos2θ=4cos2θ
∴|
+
|=2cosθ,θ∈[0,
]
∴
=
=
令t=cosθ,则t∈[
,1],y=
=
=t-
,t∈[
,1]
则y′=1+
>0
∴y=t-
在[
,1]上单调递增
∴ymax=
,ymin=-
(2)由|k
+
|=
|
-k
|可得(k
+
)2=3(
-k
)2
即k2
2+
2+2k
•
=3(
2-2k
•
+k2
2)
又∵|
|=|
|=1
∴k2+1+2k
•
=3(1+k2-2k
•
)
∴
•
=
由
•
=cos2θ,θ∈[0,
]可得,-
≤
•
≤1
∴-
≤
≤1
∴
∴
解可得,
∴k=-1或2-
≤k≤2+
综上可得,k得取值范围为{k|k=-1或2-
≤k≤2+
}
. |
a |
3θ |
2 |
3θ |
2 |
. |
b |
θ |
2 |
θ |
2 |
∴
a |
b |
3θ |
2 |
θ |
2 |
3θ |
2 |
θ |
2 |
∵|
a |
b |
a |
b |
a |
b |
∴|
a |
b |
π |
3 |
∴
| ||||
|
|
cos2θ |
2cosθ |
2cos2θ-1 |
2cosθ |
令t=cosθ,则t∈[
1 |
2 |
| ||||
|
|
2t2-1 |
2t |
1 |
2t |
1 |
2 |
则y′=1+
1 |
2t2 |
∴y=t-
1 |
2t |
1 |
2 |
∴ymax=
1 |
2 |
1 |
2 |
(2)由|k
a |
b |
3 |
a |
b |
a |
b |
a |
b |
即k2
a |
b |
a |
b |
a |
a |
b |
b |
又∵|
a |
b |
∴k2+1+2k
a |
b |
a |
b |
∴
a |
b |
1+k2 |
4k |
由
a |
b |
π |
3 |
1 |
2 |
a |
b |
∴-
1 |
2 |
1+k2 |
4k |
∴
|
∴
|
解可得,
|
∴k=-1或2-
3 |
3 |
综上可得,k得取值范围为{k|k=-1或2-
3 |
3 |
练习册系列答案
相关题目