题目内容

已知实数a满足0<a≤2,a≠1,设函数f (x)=
1
3
x3-
a+1
2
x2+ax.
(1)当a=2时,求f (x)的极小值;
(2)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于
5
4
分析:(1)求出函数的导数,利用导数画出表格,求出函数的极值
(2)根据f(x)的极值求出函数g(x)关系式从而证明函数g(x)的极大值小于
5
4
解答:解:(Ⅰ)解:当a=2时,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x (-∞,1) 1 (1,2) 2 (2,+∞)
f′(x) + 0 - 0 +
f(x) 单调递增 极大值 单调递减 极小值 单调递增
所以,f(x)的极小值为f(2)=
2
3
.(6分)
.(5分)
(Ⅱ)解:f′(x)=x2-(a+1)x+a=(x-1)(x-a).
g′(x)=3x2+2bx-(2b+4)+
1
x
=
(x-1)[3x2+(2b+3)x-1]
x

令p(x)=3x2+(2b+3)x-1,
(1)当1<a≤2时,
f(x)的极小值点x=a,则g(x)的极小值点也为x=a,
所以p(a)=0,
即3a2+(2b+3)a-1=0,
即b=
1-3a2-3a
2a

此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b
=-3+
3a2+3a-1
2a
=
3
2
a-
1
2a
-
3
2

由于1<a≤2,
3
2
a-
1
2a
-
3
2
3
2
   x2-
1
4
-
3
2
=
5
4
.(10分)
(2)当0<a<1时,
f(x)的极小值点x=1,则g(x)的极小值点为x=1,
由于p(x)=0有一正一负两实根,不妨设x2<0<x1
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-
5
2

此时g(x)的极大值点x=x1
有g(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1 (x12-2x1<0)
<-
5
2
(x12-2x1)-4x1+1
=-
5
2
x12+x1+1
=-
5
2
(x1-
1
5
2+1+
1
10
(0<x1<1)
11
10
,<
5
4

综上所述,g(x)的极大值小于等于
5
4
.(14分)
点评:本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网