题目内容
用红、黄、蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
108
把区域分为三部分,第一部分1、5、9,有3种涂法.第二部分4、7、8,当5、7同色时,4、8各有2种涂法,共4种涂法;当5、7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步计数原理,可得共有3×6×6=108种涂法.
练习册系列答案
相关题目