题目内容
设函数f(x)的定义域为[-1,1],f[cos(α+
)]=tcos(2α+
)+sin(α+
)+cos(α+
)
(1)若f(0)=-1,求t的值;
(2)当t=1时,求函数f(x)的零点.
π |
30 |
π |
15 |
π |
5 |
11π |
30 |
(1)若f(0)=-1,求t的值;
(2)当t=1时,求函数f(x)的零点.
分析:(1)根据cos
=0得出α=
,然后代入函数中,再由特殊角的三角函数值求出结果.
(2)先将t=1代入函数关系式中,然后化简得出f[cos(α+
)]=2cos2(a+
)+cos(a+
)-1,再 令x=cos(a+
)得出f(x)=2x2+x-1,即可求出零点.
π |
2 |
7π |
15 |
(2)先将t=1代入函数关系式中,然后化简得出f[cos(α+
π |
30 |
π |
30 |
π |
30 |
π |
30 |
解答:解:(1)令α=
∴f(cos
)=tcosπ+sin(
π)+cos(
π)=-t=-1
∴t=1
(2)当t=1时,
f[cos(α+
)]=cos(2a+
)+sin(α+
)+cos(a+
)
=cos2(a+
)+sin[(a+
)+
]+cos[(a+
)+
]
=2cos2(a+
)+cos(a+
)-1
令x=cos(a+
)
∴f(x)=2x2+x-1
∵-1≤x≤1
∴x1=-1 x2=
7π |
15 |
∴f(cos
π |
2 |
2 |
3 |
5 |
6 |
∴t=1
(2)当t=1时,
f[cos(α+
π |
30 |
π |
15 |
π |
5 |
11π |
30 |
=cos2(a+
π |
30 |
π |
30 |
π |
6 |
π |
30 |
π |
3 |
=2cos2(a+
π |
30 |
π |
30 |
令x=cos(a+
π |
30 |
∴f(x)=2x2+x-1
∵-1≤x≤1
∴x1=-1 x2=
1 |
2 |
点评:本题考查了三角函数的化简求值以及函数零点的求法,求函数的零点时要注意x的范围.
练习册系列答案
相关题目