题目内容
【题目】已知数列中,,,的前项和为,且满足().
(1)试求数列的通项公式;
(2)令,是的前项和,证明:;
(3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.
【答案】(1);(2)证明见解析;(3)证明见解析
【解析】
(1)由题意首先整理所给的递推关系式,然后利用累加法即可求得数列的通项公式;
(2)结合(1)中的通项公式裂项求和求得数列的前项和即可证得题中的结论;
(3)首先求解不等式得到实数n的取值范围,然后结合所得的结果给出的值即可.
(1)由题意知(n≥3),
即(n≥3),
,n≥3.
检验知n=1,2时,结论也成立,
故.
(2) 由于bn===
故
,
所以,.
(3)若Tn>m,其中m∈(0,),则有>m,
则2n+1>,
故,
取(其中[x]表示不超过x的最大整数),
则当时,.
练习册系列答案
相关题目