题目内容
设等差数列{an}的前n项和为Sn,且S4=-62,S6=-75,求:
(1){an}的通项公式an及其前n项和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.
(1)n2-n(2)147
【解析】(1)设等差数列首项为a1,公差为d,依题意得解得a1=-20,d=3.
an=a1+(n-1)d=3n-23,Sn==n2-n.
(2)∵a1=-20,d=3,
∴{an}的项随着n的增大而增大.
设ak≤0且ak+1≥0得3k-23≤0,且3(k+1)-23≥0,
∴≤k≤(k∈Z),故k=7.
即当n≤7时,an<0;当n≥8时,an>0.
∴|a1|+|a2|+|a3|+…+|a14|=-(a1+a2+…+a7)+(a8+a9+…+a14)=S14-2S7=147.
练习册系列答案
相关题目