题目内容

 (本题满分15分) 已知抛物线C的顶点在原点, 焦点为F(0, 1).

(Ⅰ) 求抛物线C的方程;

(Ⅱ)  在抛物线C上是否存在点P, 使得过点P

的直线交C于另一点Q, 满足PFQF, 且

PQ与C在点P处的切线垂直?

若存在, 求出点P的坐标; 若不存在,请说明理由.

本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力。满分15分。

(Ⅰ)  解: 设抛物线C的方程是x2 = ay,

,        即a = 4 .

故所求抛物线C的方程为x2 = 4y .             …………………(5分)

(Ⅱ) 解:设P(x1, y1), Q(x2, y2) ,

则抛物线C在点P处的切线方程是: ,

直线PQ的方程是:  .

将上式代入抛物线C的方程, 得:,

x1+x2=, x1x2=-8-4y1,                               

所以 x2=x1 , y2=+y1+4 .

=(x1, y1-1), =(x2, y2-1),

×x1 x2+(y1-1) (y2-1)=x1 x2y1 y2-(y1y2)+1

=-4(2+y1)+ y1(+y1+4)-(+2y1+4)+1

-2y1-7=(+2y1+1)-4(+y1+2)

=(y1+1)2=0,

y1=4, 此时, 点P的坐标是(±4,4) .  经检验, 符合题意.

所以, 满足条件的点P存在, 其坐标为P(±4,4). ………………(15分)

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网