题目内容

 (文科)(本题满分14分)设函数f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点(,2).

    (Ⅰ)求实数m的值;

    (Ⅱ)求函数f(x)的最小值及此时x值的集合.

 (文科)解:(Ⅰ)f(x)=a·b=m(1+sin2x)+cos2x.

由已知得f()=m(1+sin)+cos=2,解得m=1.……6分

    (Ⅱ)由(Ⅰ)得f(x)=1+sin2x+cos2x=1+sin(2x+).

        所以当sin(2x+)=-1时,f(x)的最小值为1-. ……………11分

        由sin(2x+)=-1,得x值的集合为{x|x=k,k∈Z}.……14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网