题目内容
【题目】已知的图象关于原点对称,其中a为常数.
(1)求a的值,并写出函数f(x)的单调区间(不需要求解过程);
(2)若关于x的方程在[2,3]上有解,求k的取值范围.
【答案】(1),f(x)在(﹣∞,﹣1)和(1,+∞)上是单调增函数;(2)[﹣1,1].
【解析】
(1)根据的图象关于原点对称,得到f(x)是奇函数,
则f(x)+f(﹣x)=0,恒成立,即恒成立,化简为x2(a2﹣1)=0求解.根据a的值,f(x)=log(1),再利用复合函数的单调性确定单调区间.
(2)关于x的方程在[2,3]上有解,即(x+k)在[2,3]上有解,转化为kx,在[2,3]上有解,再求得g(x)x,x∈[2,3]值域即可.
(1)因为的图象关于原点对称,
所以f(x)为奇函数,
所以f(x)+f(﹣x)=0,
即,
所以1﹣a2x2=1-x2,
即x2(a2﹣1)=0,
所以a=﹣1或a=1(舍去),
所以f(x)=log(1),定义域为(﹣∞,﹣1)(1,+∞).
所以f(x)的增区间是(﹣∞,﹣1)和(1,+∞),无减区间.
(2)关于x的方程在[2,3]上有解,
即(x+k)在[2,3]上有解,
即x+k,得kx,
令g(x)x,x∈[2,3],
则g(x)=1x在x∈[2,3]上单调递减,且f(2)=1,f(3)=﹣1,
所以k的取值范围是[﹣1,1].
【题目】为了培养学生的安全意识,某中学举行了一次“安全自救”的知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
序号(i) | 分组(分数) | 组中值(Gi) | 频数(人数) | 频率(fi) |
1 | 65 | ① | 0.10 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.20 | |
4 | 95 | ④ | ⑤ | |
合计 | 50 | 1.00 |
(1)求出频率分布表中①②③④⑤处的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生能获奖;
(3)求这800名学生的平均分.
【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组 | |||||
企业数 | 2 | 24 | 53 | 14 | 7 |
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.