ÌâÄ¿ÄÚÈÝ
17£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl£º$\left\{\begin{array}{l}{x=-4+tcos\frac{¦Ð}{4}}\\{y=tsin\frac{¦Ð}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßC£º$\left\{\begin{array}{l}{x=acos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆäÖÐa£¾0£¬ÈôÇúÏßCÉÏËùÓеã¾ùÔÚÖ±ÏßlµÄÓÒÏ·½£¬ÇóaµÄÈ¡Öµ·¶Î§£®·ÖÎö Ê×ÏÈ£¬½«Ö±ÏߺÍÍÖÔ²»¯ÎªÆÕͨ·½³Ì£¬È»ºó£¬½áºÏÖ±ÏßÓëÍÖÔ²µÄλÖùØϵÇó½â£®
½â´ð ½â£º¸ù¾ÝÖ±Ïßl£º$\left\{\begin{array}{l}{x=-4+tcos\frac{¦Ð}{4}}\\{y=tsin\frac{¦Ð}{4}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
µÃx-y+4=0£¬
¡ßÇúÏßC£º$\left\{\begin{array}{l}{x=acos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡à$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{4}=1$£¬
ÁªÁ¢·½³Ì×飬µÃ
£¨4+a2£©x2+8a2x+12a2=0£¬
¡à¡÷=64a4-4¡Á12a2¡Á£¨4+a2£©£¼0£¬
¡à-2$\sqrt{3}$£¼a$£¼2\sqrt{3}$£¬
¡ßa£¾0£¬
¡à0£¼a£¼2$\sqrt{3}$£¬
¡àaµÄÈ¡Öµ·¶Î§£¨0£¬2$\sqrt{3}$£©£®
µãÆÀ ±¾ÌâÖص㿼²éÁËÖ±ÏߵIJÎÊý·½³Ì¡¢ÍÖÔ²µÄ²ÎÊý·½³ÌµÈ֪ʶ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿