题目内容

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an(n∈N*)

(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn
分析:(1)由题设知数列{an}是首项为
1
4
,公比为
1
4
的等比数列,由此能求出数列{an}的通项公式.
(2)由bn+2=3log
1
4
an
,知bn=3log
1
4
(
1
4
)n-2
=3n-2.由此能够证明数列{bn}是等差数列.
(3)由an=(
1
4
)n
,bn=3n-2,知cn=an+bn=(
1
4
n+3n-2,由此利用分组求和法能求出{cn}的前n项和Sn
解答:解:(1)在数列{an}中,∵a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an(n∈N*)

∴数列{an}是首项为
1
4
,公比为
1
4
的等比数列,
∴an=(
1
4
n,n∈N*
(2)∵bn+2=3log
1
4
an

bn=3log
1
4
(
1
4
)n-2
=3n-2.
∴b1=1,bn+1-bn=3,
∴数列{bn}是首项为b1=1,公差d=3的等差数列.
(3)由(1)知an=(
1
4
)n
,bn=3n-2,
∴cn=an+bn=(
1
4
n+3n-2,
∴Sn=1+
1
4
+4+(
1
4
2+7+(
1
4
3+…+(3n-5)+(
1
4
n-1+(3n-2)+(
1
4
n
=[1+4+7+…+(3n-5)+(3n-2)]+[
1
4
+(
1
4
2+(
1
4
3+…+(
1
4
n]
=
n(1+3n-2)
2
+
1
4
[1-(
1
4
)n]
1-
1
4

=
3n2-n
2
+
1
3
-
1
3
•(
1
4
)n
点评:本题考查数列的通项公式的求法,考查等差数列的证明,考查数列的前n和的求法.解题时要认真审题,仔细解答,注意分组求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网