题目内容
在数列{an}中,已知a1=
,
=
,bn+2=3log
an(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
1 |
4 |
an+1 |
an |
1 |
4 |
1 |
4 |
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
分析:(1)由题设知数列{an}是首项为
,公比为
的等比数列,由此能求出数列{an}的通项公式.
(2)由bn+2=3log
an,知bn=3log
(
)n-2=3n-2.由此能够证明数列{bn}是等差数列.
(3)由an=(
)n,bn=3n-2,知cn=an+bn=(
)n+3n-2,由此利用分组求和法能求出{cn}的前n项和Sn.
1 |
4 |
1 |
4 |
(2)由bn+2=3log
1 |
4 |
1 |
4 |
1 |
4 |
(3)由an=(
1 |
4 |
1 |
4 |
解答:解:(1)在数列{an}中,∵a1=
,
=
,bn+2=3log
an(n∈N*),
∴数列{an}是首项为
,公比为
的等比数列,
∴an=(
)n,n∈N*.
(2)∵bn+2=3log
an,
∴bn=3log
(
)n-2=3n-2.
∴b1=1,bn+1-bn=3,
∴数列{bn}是首项为b1=1,公差d=3的等差数列.
(3)由(1)知an=(
)n,bn=3n-2,
∴cn=an+bn=(
)n+3n-2,
∴Sn=1+
+4+(
)2+7+(
)3+…+(3n-5)+(
)n-1+(3n-2)+(
)n
=[1+4+7+…+(3n-5)+(3n-2)]+[
+(
)2+(
)3+…+(
)n]
=
+
=
+
-
•(
)n.
1 |
4 |
an+1 |
an |
1 |
4 |
1 |
4 |
∴数列{an}是首项为
1 |
4 |
1 |
4 |
∴an=(
1 |
4 |
(2)∵bn+2=3log
1 |
4 |
∴bn=3log
1 |
4 |
1 |
4 |
∴b1=1,bn+1-bn=3,
∴数列{bn}是首项为b1=1,公差d=3的等差数列.
(3)由(1)知an=(
1 |
4 |
∴cn=an+bn=(
1 |
4 |
∴Sn=1+
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
=[1+4+7+…+(3n-5)+(3n-2)]+[
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
=
n(1+3n-2) |
2 |
| ||||
1-
|
=
3n2-n |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
点评:本题考查数列的通项公式的求法,考查等差数列的证明,考查数列的前n和的求法.解题时要认真审题,仔细解答,注意分组求和法的合理运用.
练习册系列答案
相关题目