题目内容
【题目】已知椭圆的右焦点为,设直线与轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.
(1)若直线的倾斜角为,求的值;
(2)设直线交直线于点,证明:直线.
【答案】(1);(2)详见解析.
【解析】
试题分析:(1)设,根据图形可知,直线的方程为,代入椭圆方程得到根与系数的关系,,这样可求得三角形的面积;(2)设直线的方程为与椭圆方程联立,得到根与系数的关系,再根据三点共线,那么,得到坐标间的关系,若,即说明.
试题解析:由题意,知,.........1分
(1)∵直线的倾斜角为,∴.........................1分
∴直线的方程为......................2分
代入椭圆方程,可得.
设.∴........................4分
∴............6分
(2)设直线的方程为.
代入椭圆方程,得.
设,则...............8分
设,∵三点共线,
∴有,∴...........................9分
而
...................11分
∴直线轴,即..............................12分
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望;
(ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望.